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Abstract. Recently we introduced a one-dimensional accelerated random sequential adsorption
process as a model for chemisorption with precursor layer diffusion. In this paper we consider
this deposition process on disordered or impure substrates. The problem is solved exactly on
both the lattice and continuum and for various impurity distributions. The results are compared
with those from the standard random sequential adsorption model.

1. Introduction

The adsorption of molecules from a gas phase onto a solid surface is one of the most
common phenomena in the physical sciences. It has been extensively studied theoretically
by a variety of techniques ranging from molecular dynamics simulations to analytical results
for simplified models. All the studies endeavour to identify the underlying kinetic processes
that control the phenomenon, and their physical origin.

The simplest model one can consider is that ofrandom sequential adsorption(RSA)
[1–4], which accounts for the hard core repulsion that prevents molecules from overlapping
in the substrate. At each time step one randomly picks a position to deposit a molecule,
if enough space is empty the molecule is deposited irreversibly, otherwise it returns to
the gas phase. This process has been exactly solved in one dimension [1–4]. In higher
dimensions it has been studied numerically (see for instance [5–8]), and analytically by using
approximation techniques that truncate the rate equations [9], or by studying the process
on a Bethe lattice [10]. Some additional insight into model behaviour in two dimensions
can be gained by studying quasi-one-dimensional models [11, 12]. In all dimensions the
system evolves into a saturated jammed state in which it is no longer possible to deposit
any further molecules. The infinite time limit in which this occurs is sometimes called the
‘jamming limit’. For a comprehensive review of the kinetics of RSA see [13].

Recently, a variant of RSA has been introduced calledaccelerated random sequential
adsorption(ARSA) [14, 15]. This process, motivated by the seminal work of Kisliuk [16],
and by various experimental [17, 18] and numerical [19] studies, is designed to model the
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chemisorption of gas molecules onto a metal surface when there is diffusion in a precursor
layer (physisorbed state). Other applications of this model in physics and biology were
discussed in [14, 15]. ARSA is different from RSA in that when a molecule cannot be
deposited because its target position is occupied, it diffuses on top of the previously deposited
molecules until it finds an empty space on the substrate large enough to accept it.

The ARSA process models systems in which the timescale of diffusion is small compared
with the timescale of deposition attempts (i.e. adsorption-limited systems). This includes
systems in which the flux of gas particles onto the surface is low, except when the surface
is almost full. There is a lengthier discussion of this point in [14].

The ARSA process has been studied numerically in [14] and its gap size distribution
obtained exactly in one dimension in [15]. In this model the rate of successful surface
depositions is independent of time, so the surface coverageθ(t) grows linearly with time
t . Hence, it takes a finite amount of time (proportional to the system size) for the substrate
to saturate. As was suggested in [20], we call the process ARSA to highlight the contrast
with RSA, where the probability of a molecule being deposited goes to zero in the long
time limit, therefore taking an infinite amount of time to reach the saturated state.

Both RSA and ARSA can be studied on a lattice [1–3] or on a continuum [4]. In
the one-dimensional continuum RSA [4] and ARSA [15] problems particles of size 1 are
randomly deposited on a line and an exact solution can be found for the evolution with time
of the distribution of empty spaces between them. In both problems it is possible to move
between the one-dimensional lattice, on whichk-mers are deposited, and the corresponding
continuum system by taking the limitk→∞ [21].

Motivated by the fact that real substrates are often disordered or impure, in this paper
we enlarge the range of exactly solved ARSA systems to include an initial distribution of
impurities.

The problem of RSA with random initial impurities was considered earlier [22–24]. In
[22, 23] the impurities were modelled by monomers that were randomly distributed and the
molecules were represented byk-mers. The coverage of the jammed state and the kinetics
of the approach to saturation were determined as a function of the initial concentration of
impurities andk [22]. In [24] this study was extended to impurities of arbitrary sizek0

placed on the substrate by RSA.
This paper is organized as follows. In section 2 we consider the ARSA ofk-mers on

disordered lattices with randomly distributed impurities. In section 3 we study the RSA and
ARSA of k-mers on general disordered substrates and then in section 4 we consider the
continuum problem. Finally, in section 5 we summarize our main conclusions.

2. ARSA on disordered substrates

We consider the ARSA ofk-mers onto a lattice with an initial concentrationρ of monomer
impurities. For simplicity, we assume that the physisorbed state of ak-mer is the same
whether it is on top of impurities or molecules. In [15] the density of gaps of lengthr

between occupied regions,cr(t), was shown to obey the differential equation

dcr(t)

dt
= −[r − (k − 1)]cr(t)+ 2

∞∑
s=0

cr+s+k(t)+ q(t)(cr+k(t)− cr(t)) (1)

for r > k and

dcr(t)

dt
= 2

∞∑
s=0

cr+s+k(t)+ q(t)cr+k(t) (2)
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for r < k, where timet stands for the number of deposition attempts divided by the system
size, and the rate of deposition attempts has been set to 1. By ‘density’ we mean the number
of occurrences divided by the system size. The quantity

q(t) = 1−∑∞r=k[r − (k − 1)]cr(t)∑∞
r=k cr (t)

(3)

and is equal to the average length of the chains of site (not necessarily all occupied) in which
it is not possible to deposit ak-mer. This is the average number of positions where a particle
can physisorb before diffusing towards one of the edges of the chain where chemisorption
takes place. The denominator and numerator represent, respectively, the number density of
chains and the number density of positions in which chemisorption is not allowed.

The first term on the right-hand side in (1) represents the destruction of a gap of size
r by direct deposition. The second term corresponds to the creation of a gap of sizer

by direct deposition in a larger gap. The last term represents the creation and destruction
of gaps of sizer by the diffusion of molecules on top of previously adsorbed molecules.
Obviously, for r < k some of these terms are not present. The equations describing the
RSA process are obtained by dropping the terms inq(t) on the right-hand side of (1) and
(2).

These equations are derived under theworking hypothesisthat the size of an island is
uncorrelated with the sizer of the neighbouring gap ifr > k. This hypothesis is borne
out by numerical simulations of the system. Physically, it originates from the fact that
the probability of deposition at the edge of an island is not affected by the sizer of the
neighbouring gap ifr > k, together with the fact that deposition is irreversible, i.e. there is
no gap creation.

The coverage is given in terms ofcr(t) by

θ(t) = 1−
∞∑
r=1

rcr(t). (4)

The differential equations forcr(t) can be solved [15, 25] by making the assumption
that gaps of sizer > k obey a Poissonian distribution,

cr(t) = A(t) exp{−(r − k)B(t)}. (5)

This is based on the assumption of independence between the gaps and the evolving
structure. If the initial monomer impurities are randomly distributed and have density
ρ, (1> ρ > 0), then we have as the initial condition

cr(0) = (1− ρ)rρ2 (6)

consistent withθ(0) = ρ. Substituting (5) into (1) gives

dA(t)

dt
= A(t)

[
q(t)(e−kB(t) − 1)+ 2e−kB(t)

1− e−B(t)
− 1

]
(7)

and

B(t) = t − ln(1− ρ). (8)

Substituting (5) into (3) gives

q(t) = 1− e−B(t)

A(t)
− 1

1− e−B(t)
. (9)

Eliminating q(t) between (7) and (9), substituting forB(t) and solving the resultant
differential equation forA(t) gives

cr(t) = [1− (1− ρ)e−t ]2(G(t)− 1)[(1− ρ)e−t ]r−k (10)
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for r > k, with

G(t) = (1− ρ)k + 1− ∫ t0 F(u) du

F(t)
(11)

and

F(t) = exp

{
− t +

∫ t

0

1− (1− ρ)ke−ku
1− (1− ρ)e−u du

}
= exp

{ k−1∑
r=1

(1− ρ)r 1− e−rt

r

}
. (12)

Then, substituting the solution (10) into (2) and solving the resultant equation we obtain

cr(t) = (1− ρ)k
∫ t

0
[1− (1− ρ)e−u]G(u)e−ru du (13)

for r < k. As the rate of successful depositions is 1, the coverage at timet 6 tc, wheretc
is the time when the lattice reaches the jammed state, is given by

θ(t) = ρ + kt. (14)

The saturation timetc is defined bycr(tc) = 0 for all r > k, or G(tc) = 1. Hence from
(11), tc obeys the equation

F(tc)+
∫ tc

0
F(u) du = (1− ρ)k + 1 (15)

and the saturation coverage is

θ(tc) = ρ + ktc. (16)

These results are consistent with the standard ARSA model [15] whenρ = 0. As ρ → 0

θρ(tc) ≈ θ0(tc)−
[

k2

F(tc)+ F ′(tc) − 1

]
ρ=0

ρ +O(ρ2)

where the square bracket on the right-hand side is evaluated atρ = 0. Conversely, in the
high impurity density limit,ρ → 1, thenθ(tc) ≈ 1− (1− ρ)+ k(1− ρ)k +O((1− ρ)k+1)

for k > 1. Both of these asymptotics have a linear leading-order dependence onρ.
Equation (15) can be solved numerically to give the saturation coverage as a function

of k andρ. This can be compared with the value of the saturation coverage obtained for
the RSA process [20].

Figure 1 shows the graphs of the saturation coverage againstρ for dimer and trimer
deposition using either RSA or ARSA. As expected, the saturation coverage is greater for
ARSA than for RSA for all values ofρ < 1 because of the greater efficiency with which
ARSA fills the lattice. This close-packing effect decreases as the fraction of the substrate
available for deposition, 1− ρ, gets smaller. In both RSA and ARSAθ(tc) ∼ ρ asρ → 1.
The asymptotic approach in time to the saturated state is the same as that for the systems
without impurities; exponential for RSA and linear for ARSA. From figure 1 one can see
that the positionρmin of the minimum coverage is shifted. In RSAρmin = 0.5 whereas in
ARSA, ρmin ≈ 0.57, the solution forρ of

F(tc)+ dF(tc)

dtc
= 4(1− ρ) (17)

obtained from (15) and (16) whenk = 2.
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Figure 1. The saturation coverage against initial impurity concentrationρ for the RSA and
ARSA dimer and trimer depositions.

3. ARSA and RSA with generalized impurities

In the previous section we considered the deposition ofk-mers by ARSA onto lattices in
which monomer impurities had been placed randomly. We can think of these impurities as
having been placed by RSA up to a densityρ.

However, depending on their molecular properties, the impurities or heterogeneities
might have been produced either by deposition processes such as RSA or ARSA, or by
other processes on the substrate. In this section we extend the previous model to a more
general situation in which impurities arek0-mers and have been produced by an unspecified
process. In addition, we consider the deposition ofk-mers on the impure substrate either
by ARSA or RSA.

In order to be able to solve the model in a similar manner to that of section 2, we
assume that the impurities occupy a fractionρ of the substrate and have a gap distribution
with Poissonian form. In other words, the gap distribution of the system att = 0 is

cr(0) = f (ρ) exp{−rg(ρ)} ≡ f (ρ)Xr0 (18)

for r > k0 and by definitionX0 = exp(−g(ρ)). In section 2 we hadk0 = 1, g(ρ) = ρ and
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f (ρ) = (1−X0)
2(1−ρ)/X0. The functionf (ρ) is related tog(ρ) through the normalization

constraint
∞∑
r=1

rcr(0) = f (ρ)Xk0

(1−X0)2
[X0+ k0(1−X0)] +

k0−1∑
r=1

rcr(0) = 1− ρ. (19)

In the limit whenρ → 0, we require thatcr(0) = 0 for all r and that

lim
t→0

∞∑
r=1

rcr(t) = 1 (20)

which implies thatf (0) = 0, g(0) = 0 (i.e.X0 = 1) and

lim
ρ→0

f (ρ)

(1−X0)2
= 1. (21)

For ARSA and RSA impurities, the gap number densitiescs(0) for s < k0 can be
expressed in terms of the gap number densitiescr(0) for r > k0. However, thecs(0) do not
have the Poissonian form (18). Consequently we restrict our considerations tok0 6 k so
that ansatz (5) holds for allr > k. For impurities produced by a generic process for which
f (ρ) is not known, whenk0 > 1 thencs(0) has to be specified.

Note that while the gap distribution is all we need to know about the impurities, it
does not determine the distribution of impurity islands, whose only constraint is that its first
moment must equalρ. Therefore, the generality of this approach lies in the arbitrariness of
g(ρ) and of the distribution of impurity islands.

The derivation of the solution to the rate equations (1) (whereq = 0 for RSA) is
analogous to that of section 2 and gives the following results. Let us define

X = X0 exp{−t} = exp{−t − g(ρ)} (22)

and

F(t) = exp

{ k−1∑
r=1

Xr0 −Xr
r

}
(23)

which extends (12) to general impurities.
For ARSA deposition ofk-mers on the impure substrate, we obtain

cr(t) = (1−X)2[GARSA(t, ρ)− 1]Xr−k (24)

whenr > k, with

GARSA(t, ρ) = 1

F(t)

[
f (ρ)Xk0

(1−X0)2
+ 1−

∫ t

0
F(u) du

]
. (25)

The saturation coverage isθc = θ(tc) = ρ + ktc, with tc the solution of

F(tc)+
∫ tc

0
F(u) du = f (ρ)Xk0

(1−X0)2
+ 1. (26)

For RSA deposition ofk-mers we find

cr(t) = (1−X)2GRSA(t, ρ)X
r−k (27)

whenr > k, with

GRSA(t, ρ) = f (ρ)Xk0

(1−X0)2

X

F(t)2
(28)
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and

θc = θ(∞) = ρ + k
∫ ∞

0
G(u) du. (29)

Regarding the impurity distribution we specify two cases. When it has been produced by
ARSA,

g(ρ) = ρ

k0
and f (ρ) = (1−X0)

2[GARSA(0, 0)− 1]

X
k0
0

(30)

and when it has been produced by RSA,

g(ρ) = t0(ρ, k0) and f (ρ) = (1−X0)
2GRSA(0, 0)

X
k0
0

(31)

wheret0(ρ, k0) is the time the RSA process would have taken, which is the solution of

θ(t0) =
∫ t0

0
GRSA(u) du = ρ.

Explicit expressions forf (ρ) and t0 in terms ofρ can be extracted from (30) for ARSA
impurities and from (31) for RSA impurities with either monomers(k0 = 1) or dimers
(k0 = 2). Results (27)–(29) and (31) for RSA deposition with RSA impurities reduce to
previous results withk0 = 1 [22] and with arbitraryk0 6 k [24].

Next we illustrate the general solutions (24), (27), (30) and (31) in four particular cases
in which dimers(k = 2) are deposited by RSA or ARSA onto a substrate where monomer
impurities (k0 = 1) have been placed by RSA or ARSA. We label these systems RR, RA,
AR and AA (see table 1). System RR was considered in [22, 23] and system RA is that from
the previous section withk = 2. Table 2 givesf (ρ), g(ρ) andX0 for k0 = 1. Solutions (24)
and (27) depend on the impurity distribution throughX and the factorf (ρ)Xk0/(1−X0)

2.
For k0 = 1, we find either from table 2 or from (19) that this factor reads

f (ρ)Xk0

(1−X0)2
= (1− ρ)Xk−1

0

which equals(1− ρ) exp[−(k− 1)ρ] for ARSA and(1− ρ)k for RSA impurities. Figure 2
shows the saturation coverageθc as calculated from (24) and (27). A number of features
can be discerned from the figure.

First, by comparing the saturation coverage of two systems, we see that: (a) for a given
process of dimer deposition,θc is greater for ARSA impurities than for RSA impurities
(AR versus RR, AA versus RA); (b) for a given a distribution of monomer impurities,θc
is greater for ARSA deposition than for RSA deposition (AA versus AR, RA versus RR).
This can be attributed to the more closely packed nature of ARSA distributions of both
impurities and molecules, and the resulting reduction in the number of gaps of sizer < k.

Table 1. Labelling of the four systems considered in section 3.

Monomer impurities

RSA ARSA

Dimer RSA RR AR
deposition ARSA RA AA
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Table 2. g(ρ), f (ρ) andX0 for monomer impurities deposited by ARSA and RSA.

ARSA RSA

g(ρ) ρ − log(1− ρ)
f (ρ) (1− exp(−ρ))2(1− ρ) ρ2

X0 exp{−ρ} 1− ρ

Figure 2. The saturation coverage against initial impurity concentrationρ for the four systems
defined in table 1.

In addition, the area between curves AA–RA is greater than the area between curves
AA–AR; similarly, it is greater between AR–RR than between RA–RR. This suggests that
the distribution of monomer impurities can affect the clustering properties of deposited
molecules more strongly than the mechanism of dimer deposition.

Second, as in section 2, there is an impurity concentrationρmin at which the saturation
coverage has a minimumθc,min. The values of these quantities are summarized in table 3.
The minimum can be understood as the point at which a balance occurs between two
opposite effects of the impurities: blocking the deposition of molecules and occupying
the substrate. The relative values of the minima agree with the above observations about



Deposition on disordered substrates 7425

Table 3. Minimum saturation coverage and impurity concentration at which it occurs for the
systems in table 1.

θc,min ρmin

RR 0.816 06. . . 0.5
RA 0.826 61. . . 0.5695. . .
AR 0.840 85. . . 0.3149. . .
AA 0.868 17. . . 0.4213. . .

θc. The location of the minima shows the following pattern: (a) for a given deposition
process,ρmin is smaller for ARSA impurities than for RSA impurities, while (b) for a given
impurity distribution,ρmin is greater for ARSA deposition than for RSA deposition. The
interpretation of this behaviour is less simple. It seems to relate to the shape of the two
curves: the minimum for whichθc,min is greater is shifted towards the side where the two
curves are more similar. In fact, in (a) (ρmin smaller for greaterθc,min) the two curves merge
asρ → 0, while in (b) (ρmin greater for greaterθc,min) they merge asρ → 1.

4. Continuum system

In [21] it was observed that one can study the continuum RSA system by taking the limit
k → ∞ of the k-mer deposition problem on a lattice after a suitable rescaling of the
variables. This also applies in the case of impurity problems [22], where in this limit the
impurities become points and the objects to be deposited become lines of unit length.

In [22] it was shown that for continuum RSA with impurities the saturation coverage is

θ(∞) = e−λ
∫ ∞

0
ds exp

{
− 2

∫ s

0

1− e−v−λ

v + λ dv

}
(32)

whereλ is the number of impurities per unit length. Similarly, we can use the results of
section 2 fork-mer ARSA on a lattice with monomer impurities, to obtain results for the
continuum ARSA of unit length objects onto a line on which point impurities have been
placed at random with number densityλ. Alternatively, we could formulate and solve the
rate equations for the continuum system as in [15].

By taking the limit k → ∞ of (12), (14) and (15) while keepingkρ = λ and kt = τ
fixed, we obtain the saturation coverageθ(τc) = τc (as in pure continuum ARSA [15]),
which obeys the equation∫ θ(tc)

0

1− e−v−λ

v + λ dv = log(1+ e−λ). (33)

As illustrated in figure 3, the saturation coverages in equations (32) and (33) decrease
monotonically withλ. In particular, they decay to zero likeλ exp(−λ) asλ → ∞. This
difference relative to lattice models, whereθc has a minimum, is because impurities in
lattices have finite size: although they block particle deposition they also contribute to the
surface coverage. Atλ = 0, θc takes the pure continuum RSA [4] and ARSA [15] values.
As usual, the saturation coverage for ARSA is always greater than that for the RSA system.

5. Conclusions

The deposition of molecules onto substrates with precursor layer diffusion was considered
in the case in which impurities, defects or other molecular species have previously been
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Figure 3. The saturation coverage in continuum ARSA and RSA against initial impurity
densityλ.

placed on the substrate.
We obtained exact results for the time evolution and saturation limit of ARSA (as well

as RSA) deposition ofk-mers onto a one-dimensional lattice with a generic distribution of
impurities of sizek0, including distributions produced by ARSA and RSA processes.

The results for RSA deposition with RSA impurities agree with earlier results. We
restricted the study to the case in which the size of the impurities is not greater than the
size of the molecules being deposited onto the surface(k0 6 k). We expect the blocking
effect of the impurities to be greater in this case.

Our results show that the presence of impurity particles or other heterogeneities on
the substrate can reduce the saturation coverage considerably, as compared with the pure
system, by creating gaps smaller thank. Reductions as large as 10% (dimers) and 20%
(trimers) were found in some cases (figure 2). For givenk andk0, the saturation coverage
has a minimum at non-trivial values of the impurity density, a non-monotonic behaviour
already observed for RSA deposition on impure substrates. Some numerical values for the
minima are given in table 3 for various systems.

Some features typical of ARSA deposition on pure substrates were also found in ARSA
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on disordered substrates. Namely, a larger value of the saturation coverage as compared
with RSA, and a linear approach (with time) to the saturated state as compared with an
exponential one in RSA.

We also derived results for the continuum system in which particles of fixed size are
deposited on a substrate with a given density number of point defects. In this case the
saturation coverage decreases monotinically with the number of defects as a consequence
of the defects having zero size. We expect, however, that most practical situations would
be more adequately described by a lattice rather than by a continuum model.

Two interesting extensions to this work, would be: (1) to allow the molecule–impurity
and molecule–molecule interactions to be different, and in particular to allow the precursor
states on top of sites occupied by molecules and impurities to be different; (2) to study
the problem numerically in two dimensions, and in particular to verify which behavioural
features are shared with the one-dimensional system and which are not.
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